

SUMITOMO CHEMICAL SINGAPORE PTE LTD

SUMITOMO CHEMICAL SINGAPORE

The global headquarters and strategic hub for MMA Business (monomer/polymer), **Sumitomo Chemical Singapore (SCS)** is Asia's largest integrated producer of MMA (Methyl Methacrylate) monomer and PMMA (Polymethyl Methacrylate).

Equipped with state-of-the-art production facilities in Jurong Chemical Island, SCS is also strategically positioned with access to one of the world's most efficient port, providing us with a competitive edge to reach out to our valued and potential customers around the world.

SUMIPEX®

SUMIPEX[®] is the registered trademark of Sumitomo Chemical for its PMMA moulding resins, manufactured in Singapore with a 150,000Mt annual production capacity. Sumitomo Chemical is one of the largest PMMA producers in Asia.

PMMA, also commonly known as acrylic, is an engineering plastic widely used in the fields of automotive, housewares, optical lens, extruded sheets, display panels, the manufacturing of light guide panels for LED television, laptop, tablet, monitor, LED Lighting and many other applications. The outstanding characteristics of PMMA have also earned it the title, "Queen of Plastics".

Milestone of SUMIPEX® Production

1999

First PMMA plant with annual production capacity of 25,000mt.

2005

De-bottlenecking of First PMMA plant to 50,000mt.

2008

Second PMMA plant began operation, increasing total annual output to 100,000mt.

2012

Third PMMA plant completed, further increasing total annual production capacity to 150,000mt.

Timeline of MMA & PMMA Capacity

HIGH FLOW AND GENERAL PURPOSE GRADES

PHYSICAL PROPERTIES

ITEM		TE	ST METHOD		HIGH FLOW	GENERAL	
	IIEM	ISO	JIS	UNIT	LG2 & LG2S	LG	
	Refractive Index	ISO 489	JIS K7142	-	1.49	1.49	
OPTICAL	Total Light Transmission	ISO 13468-1	JIS K7361-1	%	92	92	_
	Haze	ISO 14782	JIS K7136	%	<0.5	<0.5	_
	Coefficient of Linear Expansion	ISO 11359-2	JIS K7197	1/ °C	7X10-5	7X10⁻⁵	
100.00	Vicat Softening Temperature (VST)	ISO 306	JIS K7206 (B50)	°C	95	96	_
THERMAL	Deflection Temperature Under Load 1.82 Mpa (annealed)	ISO 75-2	JIS K7191 (Af method)	°C	90	91	_
	Melt Flow Rate (MFR) 230 oC, 37.3N (3.8kgf)	ISO 1133	JIS K7210	g/10min.	15	10	
	Tensile Strength at break	ISO 527-2	JIS K7162	Мра	68	72	-
	Tensile Strain at break	ISO 527-2	JIS K7162	%	2	3	_
MECHANICAL	Flexural Strength	ISO 178	JIS K7171	MPa	110	115	
MECHANICAL	Flexural Modulus	ISO 178	JIS K7171	MPa	3000	3000	
	Charpy Impact Strength (notched)	ISO 179-1	JIS K7111	KJ/m ²	1.4	1.4	
	Rockwell Hardness Scale M	ISO 2039-2	JIS K7202	-	94	94	
	Surface Resistivity	IEC 60093	JIS K6911	Ω	>1016	>1016	
	Volume Resistivity	IEC 60093	JIS K6911	Ω cm	>1015	>1015	
ELECTRICAL	Insulation Resistance	IEC 60167	JIS K6911	Ω	>1015	>1015	
	Dielectric Strength	IEC 60243-1	JIS K6911	kV/mm	20	20	_
	Dielectric Constant (1MHz)	IEC 60250	JIS K6911		3.1	3.1	
	Specific Gravity	ISO 1183	JIS K7112 (A method)	-	1.19	1.19	-
OTUER	Mold Shrinkage	ISO 294-4	ASTM D-955	%	0.2 - 0.6	0.2 - 0.6	R
UTHER	Water Absorption	ISO 62	JIS K7209	%	0.3	0.3	5
	Flammability		UL 94	-	HB	HB	-

* The above data are typical laboratory values and are intended to serve as guides only

RECOMMENDED INJECTION MOULDING CONDITIONS

		LG / LG2 / LG2S
	Temp. °C	70 - 80
PRE-DRTING CONDITIONS	Time/Hr	4 - 6
	Front °C	225 - 245
BARREL TEMP.	Middle °C	220 - 240
	Back °C	210 - 220
MOULD TEMP.	°C	60 - 85
INJECTION PRESSURE	MPa	140 - 160
HOLD PRESSURE	MPa	20 - 100
BACK PRESSURE	Gauge MPa	1.1 - 1.4
SCREW SPEED	rpm	30 - 70
COOLING TIME	sec.	20 - 60

RECOMMENDED ANNEALING CONDITIONS

	LG / LG2 / LG2S
Temp. °C	60 - 80
Time/Hr	4

APPLICATION

Used in a wide range of products such as housewares, cosmetic bottles, lens covers for electrical appliances, ornament products and etc.

05

HIGH FLOW & GENERA; PURPOSE GRAD

EXTRUSION AND HEAT RESISTANT GRADES

PHYSICAL PROPERTIES

		тести	ALTHOD		EXTRUSION		
	ITEM			UNIT	EATROSION		
		ISO	SIC		EX	ME	MH
	Refractive Index	ISO 489	JIS K7142	-	1.49	1.49	1.49
OPTICAL	Total Light Transmission	ISO 13468-1	JIS K7361-1	%	92	92	92
	Haze	ISO 14782	JIS K7136	%	<0.5	<0.5	<0.5
	Coefficient of Linear Expansion	ISO 11359-2	JIS K7197	1/ °C	7X10-5	7X10⁻⁵	7X10-5
	Vicat Softening Temperature (VST)	ISO 306	JIS K7206 (B50)	°C	104	108	109
THERMAL	Deflection Temperature Under Load 1.82 Mpa (annealed)	ISO 75-2	JIS K7191 (Af method)	°C	99	99	101
	Melt Flow Rate (MFR) 230 oC, 37.3N (3.8kgf)	ISO 1133	JIS K7210	g/10min.	1.5	4.2	2
	Tensile Strength at break	ISO 527-2	JIS K7162	Мра	74	74 76	
	Tensile Strain at break	ISO 527-2	JIS K7162	%	5	4	4
	Flexural Strength	ISO 178	JIS K7171	MPa	120	116	120
MECHANICAL	Flexural Modulus	ISO 178	JIS K7171	MPa	3100	3100	3100
	Charpy Impact Strength (notched)	ISO 179-1	JIS K7111	KJ/m ²	1.4	1.4	1.4
	Rockwell Hardness Scale M	ISO 2039-2	JIS K7202	-	100	95	100
	Surface Resistivity	IEC 60093	JIS K6911	Ω	>1016	>1016	>1016
	Volume Resistivity	IEC 60093	JIS K6911	Ω cm	>1015	>1015	>1015
ELECTRICAL	Insulation Resistance	IEC 60167	JIS K6911	Ω	>1015	>1015	>1015
	Dielectric Strength	IEC 60243-1	JIS K6911	kV/mm	20	20	20
	Dielectric Constant (1MHz)	IEC 60250	JIS K6911	-	3.1	3.1	3.1
	Specific Gravity	ISO 1183	JIS K7112 (A method)	-	1.19	1.19	1.19
OTHER	Mold Shrinkage	ISO 294-4	ASTM D-955	%	0.2 - 0.6	0.2 - 0.6	0.2 - 0.6
	Water Absorption	ISO 62	JIS K7209	%	0.3	0.3	0.3
	Flammability	U	L 94	-	HB	HB	НВ

* The above data are typical laboratory values and are intended to serve as guides only

RECOMMENDED INJECTION MOULDING CONDITIONS

		MH / ME
PRE-DRYING	Temp. °C	80 - 90
CONDITIONS	Time/Hr	4 - 6
	Front °C	240 - 260
BARREL TEMP.	Middle °C	230 - 260
	Back °C	220
MOULD TEMP.	°C	60 - 85
INJECTION PRESSURE	MPa	140 - 160
HOLD PRESSURE	MPa	20 - 80
BACK PRESSURE	Gauge MPa	0.9 - 1.4
SCREW SPEED	rpm	40 - 60
COOLING TIME	sec.	20 - 60

RECOMMENDED EXTRUSION MOULDING CONDITIONS

		EX / MH
SCREW L/D		30 - 35
CYLINDER TEMP. °C	Hopper Side	200 - 210
	Center Side	230 - 240
	Die Side	240 - 245
DIE TEMP. °C		235 - 245

RECOMMENDED ANNEALING CONDITIONS

	EX / MH / ME
Temp. °C	75 - 85
Time/Hr	4

APPLICATION

Widely used in the automotive industry for rear tail lamps and speedometer covers. Also used for optical (sunglasses and reading glasses) lens, extrusion sheets for the manufacturing of signages and displays, sound barriers, construction applications and light guide panels for general LED lightings.

OPTICAL GRADES

PHYSICAL PROPERTIES

ltom		Test N	lethod	l la it	Optical					
	item	ISO	JIS	Unit	MHN	EXN	MG5	MGSS	MGSV	
	Refractive Index	ISO 489	JIS K7142	-	1.49	1.49	1.49	1.49	1.49	
OPTICAL	Total Light Transmission	ISO 13468-1	JIS K7361-1	%	92	92	92	92	92	
	Haze	ISO 14782	JIS K7136	%	<0.5	<0.5	<0.5	<0.5	<0.5	
	Coefficient of Linear Expansion	ISO 11359-2	JIS K7197	1/ °C	7x10 ⁻⁵					
	Vicat Softening Temperature (VST)	ISO 306	JIS K7206 (B50)	°C	109	104	106	106	103	
THERMAL	Deflection Temperature Under Load 1.82 Mpa (annealed)	ISO 75-2	JIS K7191 (Af method)	°C	101	99	99	96	92	
	Melt Flow Rate (MFR) 230 oC, 37.3N (3.8kgf)	ISO 1133	JIS K7210	g/10min.	2.5	1.5	5	11	20	
	Tensile Strength at break	ISO 527-2	JIS K7162	Мра	76	74	75	73	70	
	Tensile Strain at break	ISO 527-2	JIS K7162	%	4	5	3	2	2	
	Flexural Strength	ISO 178	JIS K7171	MPa	120	120	115	94	94	
MECHANICAL	Flexural Modulus	ISO 178	JIS K7171	MPa	3100	3100	3100	3100	3100	
	Charpy Impact Strength (notched)	ISO 179-1	JIS K7111	KJ/m²	1.4	1.4	1.4	1.3	1.1	
	Rockwell Hardness Scale M	ISO 2039-2	JIS K7202	-	100	100	95	95	95	
	Surface Resistivity	IEC 60093	JIS K6911	Ω	>1016	>1016	>1016	>1016	>1016	
	Volume Resistivity	IEC 60093	JIS K6911	Ω cm	>1015	>1015	>1015	>1015	>1015	
ELECTRICAL	Insulation Resistance	IEC 60167	JIS K6911	Ω	>1015	>1015	>1015	>1015	>1015	
	Dielectric Strength	IEC 60243-1	JIS K6911	kV/mm	20	20	20	20	20	
	Dielectric Constant (1MHz)	IEC 60250	JIS K6911	-	3.1	3.1	3.1	3.1	3.1	
	Specific Gravity	ISO 1183	JIS K7112 (A method)	-	1.19	1.19	1.19	1.19	1.19	
OTHER	Mold Shrinkage	ISO 294-4	ASTM D-955	%	0.2 - 0.6	0.2 - 0.6	0.2 - 0.6	0.2 - 0.6	0.2 - 0.6	
	Water Absorption	ISO 62	JIS K7209	%	0.3	0.3	0.3	0.3	0.3	
	Flammability	UL	94	-	HB	HB	HB	HB	HB	

* The above data are typical laboratory values and are intended to serve as guides only

RECOMMENDED INJECTION MOULDING CONDITIONS

		MGSS	MGSV	MG5
PRE-DRYING	Temp. ∘C	80 - 85	70 - 80	80 - 90
CONDITIONS	Time/Hr	4 - 6	4 - 6	4 - 6
	Front °C	220 - 235	225 - 245	240 - 260
BARREL TEMP.	Middle °C	215 - 225	220 - 240	230 - 260
	Back °C	210	210 - 220	220
MOULD TEMP.	°C	60 - 85	60 - 85	60 - 85
INJECTION PRESSURE	MPa	140 - 160	140 - 160	140 - 160
HOLD PRESSURE	MPa	20 - 80	20 - 100	20 - 80
BACK PRESSURE	Gauge MPa	0.9 - 1.4	1.1 - 1.4	0.9 - 1.4
SCREW SPEED	Rpm	40 - 60	30 - 70	40 - 60
COOLING TIME	Sec.	20 - 60	20 - 60	20 - 60

RECOMMENDED

EXTRUSION MOULDING CONDITIONS

		EXN / MHN
SCREW L/D	30 - 35	
	Hopper Side	200 - 210
CYLINDER TEMP. °C	Center Side	230 - 240
	Die Side	240 - 245
DIE TEMP. °C		235 - 245

RECOMMENDED ANNEALING CONDITIONS

	MHN / EXN / MG5 / MGSS / MGSV
Temp. °C	75 - 85
Time/Hr	4

APPLICATION

Most commonly use material in the production of light guide panels for electronic displays such as LED televisions, monitors, notebooks and tablets.

SPECIAL GRADES

PHYSICAL PROPERTIES

l to m		Test N	Test Method		Chemical Resistance		
	Item	ISO	JIS	Unit	EP		
	Refractive Index	ISO 489	JIS K7142	-	1.49		
OPTICAL	Total Light Transmission	ISO 13468-1	JIS K7361-1	%	92		
	Haze	ISO 14782	JIS K7136	%	<0.5		
	Coefficient of Linear Expansion	ISO 11359-2	JIS K7197	1/ °C	7x10 ⁻⁵		
THERMAL	Vicat Softening Temperature (VST)	ISO 306	JIS K7206 (B50)	°C	109		
THERWAL	Deflection Temperature Under Load 1.82 Mpa (annealed)	ISO 75-2	JIS K7191 (Af method)	°C	101		
	Melt Flow Rate (MFR) 230°C, 37.3N (3.8kgf)	ISO 1133	JIS K7210	g/10min.	0.7		
	Tensile Strength at break	ISO 527-2	JIS K7162	Мра	76		
	Tensile Strain at break	ISO 527-2	JIS K7162	%	4		
MECHANICAL	Flexural Strength	ISO 178	JIS K7171	MPa	120		
WIECHANICAL	Flexural Modulus	ISO 178	JIS K7171	MPa	3100		
	Charpy Impact Strength (notched)	ISO 179-1	JIS K7111	KJ/m ²	1.3		
	Rockwell Hardness Scale M	ISO 2039-2	JIS K7202		100		
	Surface Resistivity	IEC 60093	JIS K6911	Ω	>1016		
	Volume Resistivity	IEC 60093	JIS K6911	Ωcm	>1015		
ELECTRICAL	Insulation Resistance	IEC 60167	JIS K6911	Ω	>1015		
	Dielectric Strength	IEC 60243-1	JIS K6911	kV/mm	20		
	Dielectric Constant (1MHz)	IEC 60250	JIS K6911		3.1		
	Specific Gravity	ISO 1183	JIS K7112 (A method)	3-	1.19		
OTHER	Mold Shrinkage	ISO 294-4	ASTM D-955	%	0.2 - 0.6		
	Water Absorption	ISO 62	JIS K7209	%	0.3		
	Flammability	UL	94		HB		

* The above data are typical laboratory values and are intended to serve as guides only

RECOMMENDED INJECTION MOULDING CONDITIONS

		EP
PRE-DRYING CONDITIONS	Temp. °C	80 - 90
	Time/Hr	4 - 6
BARREL TEMP.	Front °C	240 - 260
	Middle °C	230 - 260
	Back °C	220
MOULD TEMP.	°C	60 - 85
INJECTION PRESSURE	MPa	140 - 160
HOLD PRESSURE	MPa	20 - 80
BACK PRESSURE	Gauge MPa	0.9 - 1.4
SCREW SPEED	Rpm	40 - 60
COOLING TIME	Sec.	20 - 60

RECOMMENDED EXTRUSION MOULDING CONDITIONS

		EP
SCREW L/D		30 - 35
CYLINDER TEMP. °C	Hopper Side	200 - 210
	Center Side	230 - 240
	Die Side	240 - 245
DIE TEMP. °C		235 - 245

RECOMMENDED

ANNEALING CONDITIONS

	EP
Temp. °C	75 - 85
Time/Hr	4

Introduction and Application Of EP Grade

A grade with unique characteristics. Though EP grade has a lower melt flow rate compare to typical PMMA grades but it has a higher spiral flow length, meaning that it is ideal for both injection and extrusion usage. To add on, this grade has stronger chemical resistance in comparison to typical PMMA grades, hence, it is use widely in the automotive industry for the manufacturing of rear tail lamps and for applications which requires higher chemical resistance, such as cosmetic bottles and containers.

Comparison of Spiral Flow Length

Cylinder Temperature(°C)

Comparison of Chemical Resistance

COMPARISON

SUMIPEX® WITH OTHER TRANSPARENT RESINS

Total Light Transmission

Weather Resistance

Rockwell Hardness (ISO-2039-2)

CHEMICAL RESISTANCE

Suitable for SUMIPEX®	Unsuitable for SUMIPEX®	
Aliphatic Hydrocarbon	Chlorinated Aliphatic Hydrocarbon	
Oils and Fats	Aromatic Hydrocarbon	
Inorganic Salt Solution	Alicyclic Hydrocarbon	
Gas	Ketone	
Dilute Acid	Alcohol	
Alkali	Ether	
Dilute Alcohol	Ester	
Antifreeze Liquid	Methlene Chloride, Chloroform, Carbon Tetrachloride	
Paraffin, Hexane	Benzene, Toulene, Xylene	
Turpentine Oil, Olive Oil	Cyclohexane	
Salt Water	Acetone, MEK	
Oxygen, Nitrogen, Carbon Dioxide	Methyl Alcohol	
Dilute Hydrochloric Acid, 30% Sulfuric Acid	Diethyl Ether	
Sodium Carbonate, Sodium Hydroxide	Plasticizer (DOP, DBP, ETC), Ethyl Acetate	
10% Methyl Alcohol		
Ethylene Glycol		

* This list may not be exhaustible and is intended to serve as a general guideline only.

AUTHORISED STANDARDS

The below standards/certifications has been tested on specific Sumipex® grades only.

- UL Standard
- RoHs (Restriction of Use of Hazardous Substances) [Directive 2002/95/EC]
- With reference to U.S. 21 CFR Food and Drug Administration (Part 177.1010 Clause B)
- Automotive Safety Standard (FMVSS) [USA]
- AMECA [MH and ME grade for clear, red, yellow, gray and brown]

* Please refer to AMECA list for more details

UL: Underwriters Laboratories FMVSS: Federal Motor Vehicle Safety Standard SAE: Society of Automotive Engineers, Inc.

TYPES OF PACKAGING

25KG Paper Bag & Resin Bag

19,000KG Seabulk Bag

IMPORTANT NOTES WHEN USING SUMIPEX®

TO ACHIEVE OPTIMAL QUALITY IN MOULDED PRODUCTS, PLEASE TAKE NOTE OF THE FOLLOWING.

Dust Prevention

- Handle SUMIPEX[®] in a clean/dust-free environment.
- When opening bag, take special care to prevent foreign matters from entering the bag.

Contamination Prevention

• All equipments and parts (E.g. hopper, dryer, barrel, screw, nozzle and etc.) should be thoroughly cleaned before coming into contact with SUMIPEX[®].

Moisture Prevention

• SUMIPEX[®] should be stored in a dry environment.

HANDLING AND STORAGE

SUMIPEX[®] is a thermoplastic, and is flammable and soluble in organic solvents. Before using SUMIPEX[®], please refer to the Safety Data Sheet (SDS) separately prepared by us. The following information are general precautions and guidelines in the handling and storage of SUMIPEX[®].

Health and Safety

During the operations of drying and processing of SUMIPEX[®], local exhaust ventilation and personal protective equipments (eye goggle, gloves, respirator and etc.) are necessary.

- SUMIPEX[®] releases gases due to drying, melting and thermal decomposition. Avoid inhaling and contact with eyes and skin.
- Do not touch hot resin directly
- If feeling unwell due to inhalation, rest in a well-ventilated place and if necessary, consult a doctor.

Flammability

Do not use/place SUMIPEX[®] near flames and other sources of ignition.

- SUMIPEX[®] is flammable. Should it catch fire, toxic gases containing Carbon Monoxide can be generated due to incomplete combustion.
- In case of fire, use water, carbon dioxide or foam/powder extinguishing media to put out the fire.

Disposal

For disposal of SUMIPEX[®], engage an authorised contractor or consult the relevant local government agencies. Disposal should be conducted in accordance with state and local regulations.

Storage

- SUMIPEX[®] should be stored in accordance with state and local regulations.
- In case of spillage, remove pellets immediately to prevent potential slipping hazard.
- SUMIPEX[®] should be kept away from direct sunlight, water and moisture and be stored at ambient temperature.

Others

All technical information and data in this brochure are believed to be accurate and reliable. However, we do not guarantee results, freedom from patent infringement, or suitability of our products for any resultant application.

* This information is prepared based on the materials, information and data currently available to us. Revisions will be made when new knowledge or information is obtained.

NOTES

NOTES

ISO 9001:2008 Certificate No.: SNG 0160221

ISO 14001:2004 Certificate No.: SNG 0190095

